LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Numerical study of size effects in micro/nano plates by moving finite elements

Photo from wikipedia

Abstract Bending of plates subjected to stationary transversal loading is studied within the strain-gradient elasticity. The complete formulation including the governing equations and boundary conditions is re-derived for the thin… Click to show full abstract

Abstract Bending of plates subjected to stationary transversal loading is studied within the strain-gradient elasticity. The complete formulation including the governing equations and boundary conditions is re-derived for the thin elastic functionally graded as well as homogeneous plate starting from the unified formulation admitting the assumptions of three plate bending theories [46]. The second-order strain gradient theory of elasticity (proposed by Mindlin) with using one microstructural length-scale parameter is employed instead of classical elasticity. Although the derived formulation for thin plate is simpler than for thick plates, it involves the 6th order derivatives of deflections instead of the 4th order derivatives in the classical elasticity. The original system of governing equations is decomposed into the system of 2nd order partial differential equations and new approximation method (MFE – moving finite elements) is proposed for numerical implementation of the derived formulation. The numerical experiments are performed for study the stability, convergence and efficiency of the method as well as for study of the size-effect in micro/nano plates.

Keywords: nano plates; moving finite; study size; micro nano; elasticity; finite elements

Journal Title: Composite Structures
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.