LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Thermal buckling optimization of variable angle tow fibre composite plates with gap/overlap free design

Photo by rabinam from unsplash

Abstract Composite structures in a thermal environment may suffer from buckling failures due to thermally induced compressive forces, leading to concerns over their application in environmentally aggressive conditions. This issue… Click to show full abstract

Abstract Composite structures in a thermal environment may suffer from buckling failures due to thermally induced compressive forces, leading to concerns over their application in environmentally aggressive conditions. This issue is addressed by proposing a novel approach to the design of tow paths for enhancing thermal buckling performance, and it can also overcome the problems of tow gaps and overlapping. A level set function, such as defined by signed distance function, for representing a series of equidistant tows throughout the laminate, is adopted here to formulate an optimization problem that seeks to maximize the buckling load under thermal loading, and the level set values are thus the design variables. Sensitivities of thermal buckling eigenvalues with respect to tow paths, i.e. level set values, are derived through the adjoint method, and they are used to solve the optimization problem through the Hamilton-Jacobi equation. In this study, numerical examples are presented to demonstrate the effectiveness of the proposed method, where laminated plates made of various materials under different boundary conditions are considered. Results show that the proposed approach can provide efficient solutions with enhanced buckling performance.

Keywords: thermal buckling; level set; optimization variable; buckling optimization; design

Journal Title: Composite Structures
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.