LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Dynamic analysis of bi-stable hybrid symmetric laminate

Photo from wikipedia

Abstract The resulting oscillation of bi-stable hybrid symmetric laminate could enable broadband energy harvesting via piezoelectric transduction. The aim of this work is to investigate its dynamic behaviors to provide… Click to show full abstract

Abstract The resulting oscillation of bi-stable hybrid symmetric laminate could enable broadband energy harvesting via piezoelectric transduction. The aim of this work is to investigate its dynamic behaviors to provide the basis for designing broadband energy harvester. This paper proposes the dynamic analysis of this bi-stable laminate, focusing on the intra-well dynamics around its stable states and the inter-well dynamics between two stable states. Two types of stacking sequence are performed for this bi-stable laminate, and experimental testing with different harmonic excitations is carried out for each type of this bi-stable laminate. The strain responses at three positions are monitored to investigate the dynamic responses. A finite element model is also developed to analyze the static strain distribution and capture the dynamics. The results show that the laminates exhibit intra-well response under low-level excitation, and the inter-well response at a particular range frequency appears when excitation level increases. Different types of inter-well response mode involving the snap-through behavior are obtained in experiments, such as intermittent inter-well vibration and chaotic vibration. The presented results essentially highlight the need for considering the stacking sequence associated with the dynamics while designing the hybrid bi-stable symmetric laminate to obtain the desirable nonlinear response.

Keywords: hybrid symmetric; dynamic analysis; symmetric laminate; stable hybrid; analysis stable; laminate

Journal Title: Composite Structures
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.