LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Experimental and numerical study of hat shaped CFRP structures under quasi-static axial crushing

Photo from wikipedia

Abstract Carbon fiber reinforced polymers (CFRP) has been increasingly applied in automobile industry for vehicle body lightweight and safety performance improvement. However, design of CFRP components especially for crushing structures… Click to show full abstract

Abstract Carbon fiber reinforced polymers (CFRP) has been increasingly applied in automobile industry for vehicle body lightweight and safety performance improvement. However, design of CFRP components especially for crushing structures is still highly ambiguous. The present study aims to study the deformation behaviour and energy absorption of the hat shaped CFRP structures and optimize the section shape. Two types of hat shaped CFRP structures with various thicknesses and ply orientation were tested under axial quasi-static crushing. The results show that the Type II hat shaped structure presents a stable progressive crushing mode and better energy absorbing ability as compared with the Type I hat shaped structure. Then, a finite element model was developed using the multi-layer shell element method, and was validated by the axial crushing test results. Finally, the section shape of the Type II CFRP structure was optimized through the surrogate model of radial basis function and global response surface method, and the influences of the section shape on crushing behaviours and energy absorbing abilities were analysed.

Keywords: quasi static; cfrp; axial crushing; cfrp structures; hat shaped; shaped cfrp

Journal Title: Composite Structures
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.