LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

An experimental and numerical investigation of highly strong and tough epoxy based nanocomposite by addition of MWCNTs: Tensile and mode I fracture tests

Photo from wikipedia

Abstract The present study investigates, through experimental and numerical approaches, the incorporation effect of different weight concentrations of multi-walled carbon nanotubes (MWCNTs) on the mechanical properties of epoxy. Tensile and… Click to show full abstract

Abstract The present study investigates, through experimental and numerical approaches, the incorporation effect of different weight concentrations of multi-walled carbon nanotubes (MWCNTs) on the mechanical properties of epoxy. Tensile and mode I fracture tests were performed to investigate the effect of the addition of MWCNTs on Young’s modulus, Ultimate Tensile Strength (UTS), critical stress intensity factor (KIC) and critical strain energy release rate (GIC). Different carbon nanotubes (CNTs) contents were employed to compare the effect of the resulting microstructures (well-dispersed and agglomerated CNTs) on the mechanical properties. Field Emission Scanning Electron Microscopy (FESEM) and Scanning Electron Microscopy (SEM) were used for microstructural analysis and fractography. Experimental results showed that UTS was improved (28%) by incorporation of MWCNTs while the KIC and GIC were substantially increased by 192% and 614%, respectively. CNT pullout and crack bridging were the main contributing mechanisms in toughening the epoxy at low CNT contents (0.1 and 0.25 wt%). In contrast, a combination of crack bridging and crack branching was responsible for the resin toughening in the case of 0.5 wt% loading. The significant increase for KIC and GIC demonstrated the excellent performance of the dispersion approach used in this study. Finite Element modelling was used to provide a more robust analysis of the effect of CNT incorporation in tension tests and of the toughening mechanism of the nanocomposites in mode-I fracture tests.

Keywords: microscopy; tensile mode; fracture tests; experimental numerical; mode fracture

Journal Title: Composite Structures
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.