LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

A new method for simultaneous material and topology optimization of composite laminate structures using Hyperbolic Function Parametrization

Photo by austindistel from unsplash

Abstract This paper presents a new discrete parametrization method for simultaneous topology and material optimization of composite laminate structures, referred to as Hyperbolic Function Parametrization (HFP). The novelty of HFP… Click to show full abstract

Abstract This paper presents a new discrete parametrization method for simultaneous topology and material optimization of composite laminate structures, referred to as Hyperbolic Function Parametrization (HFP). The novelty of HFP is the way the candidate materials are parametrized in the optimization problem. In HFP, a filtering technique based on hyperbolic functions is used, such that only one design variable is used for any given number of material candidates. Compared to state-of-the-art methods such Discrete Material and Topology Optimization (DMTO) and Shape Function with Penalization (SFP), HFP has much fewer optimization variables and constraints but introduces additional non-linearity in the optimization problems. A comparative analysis of HFP, DMTO and SFP are performed based on the problem of maximizing the stiffness of composite plates under a total volume constraint and multiple manufacturing constraints using various loads, boundary conditions and input parameters. The comparison shows that all three methods are highly sensitive to the choice of input parameters for the optimization problem, although the performance of HFP is overall more consistent. HFP method performs similarly to DMTO and SFP in terms of the designs obtained and computational cost. However, HFP obtains similar or better objective function values compared to the DMTO and SFP methods.

Keywords: optimization; hfp; parametrization; topology; material; function

Journal Title: Composite Structures
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.