A neuropathological hallmark of most neurodegenerative diseases is the appearance of characteristic inclusions composed of misfolded proteins in brains of patients. Increasing evidence shows that aggregation-prone proteins such as tau,… Click to show full abstract
A neuropathological hallmark of most neurodegenerative diseases is the appearance of characteristic inclusions composed of misfolded proteins in brains of patients. Increasing evidence shows that aggregation-prone proteins such as tau, α-synuclein and TDP-43 are accumulated in a seed-dependent and self-templating manner in vitro and in vivo, suggesting that pathological protein aggregates found in these diseases function like abnormal prion protein. Indeed, insoluble tau and α-synuclein aggregates are transferred from cell to cell both in vitro and in vivo, indicating that prion-like propagation of aberrant protein aggregates may play a key role in the pathogenesis of most neurodegenerative diseases. Here, we will review the prion-like properties of TDP-43, and discuss the molecular mechanisms underlying the propagation of these accumulated proteins. The idea that aberrant protein aggregates propagate in a prion-like manner between cells opens up the possibility of novel therapeutic strategies to block the spread of these aggregates throughout the brain.
               
Click one of the above tabs to view related content.