Abstract Aerated slurry-infiltrated chicken mesh was evaluated as a ductile and light-weight material for seismic-resistance building construction. An aerated slurry-infiltrated chicken mesh frame was subjected to cyclic lateral loading in… Click to show full abstract
Abstract Aerated slurry-infiltrated chicken mesh was evaluated as a ductile and light-weight material for seismic-resistance building construction. An aerated slurry-infiltrated chicken mesh frame was subjected to cyclic lateral loading in order to assess its load-bearing capacity, ductility and hysteretic energy dissipation capacity. The frame exhibited a ductile failure mode compatible with its strong column-weak beam design. It also exhibited a desirable hysteretic energy dissipation capacity. Comparisons were made between the performance of this frame versus those of structural systems of similar geometric attributes made primarily of wood-based sheets. Semi-empirical models were developed for prediction of the structural behavior of aerated slurry-infiltrated chicken mesh. The structural performance of the frame made with aerated slurry-infiltrated chicken mesh under cyclic lateral loads was compared against those of lateral load-resisting systems of comparable geometric attributes comprising primarily of OSB and hardwood sheets. The aerated slurry-infiltrated chicken mesh structural system offers qualities that are intermediate between those of wood and reinforced concrete structural systems.
               
Click one of the above tabs to view related content.