LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Effect of corrosion on flexural strength of reinforced concrete beams with polypropylene fibers

Photo by kellysikkema from unsplash

Abstract An experimental study was performed to investigate the effects of polypropylene fibers on uncorroded and corroded reinforced concrete beams. Three different volume fractions of polypropylene fibers having 0, 0.5,… Click to show full abstract

Abstract An experimental study was performed to investigate the effects of polypropylene fibers on uncorroded and corroded reinforced concrete beams. Three different volume fractions of polypropylene fibers having 0, 0.5, and 1.5%, were tested at four corrosion levels of 0% and approximately 5, 7, and 9%. A full scale of an accelerated corrosion pool was used for the accelerated corrosion process. Reinforced concrete beams were used for an under monotonic bending test. The contribution of the actual corrosion levels of transverse and longitudinal reinforcement bars to the total corrosion levels were obtained from reinforcement bars fully extracted from concrete. Flexural strength, bond-slip, and moment-curvature relationships were examined for uncorroded and corroded reinforced concrete beams. A new model was developed to predict the flexural strength of corroded reinforced concrete beams. The proposed model for predicting the residual flexural strength of corroded beams was compared with test data published in previous studies. Furthermore, a novel model is presented for improved predictions between the actual and theoretically estimated corrosion mass losses, based on Faraday’s law, with the aid of fully extracted reinforcement bars. The model used to predict the flexural strength of corroded reinforced concrete beams with large sizes demonstrated good agreement with current and previously published literature data. In the case of corroded beams comprising differing amounts of polypropylene fibers, the performance of the corroded beams was limited by a fiber volume fraction of 1.5% at low corrosion levels.

Keywords: polypropylene fibers; concrete beams; corrosion; reinforced concrete; flexural strength

Journal Title: Construction and Building Materials
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.