LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Matrix design of light weight, high strength, high ductility ECC

Photo by majesticlukas from unsplash

Abstract In the past decade, the research on high strength, high ductility engineered cementitious composites (HSHD-ECC) has drawn much attention worldwide. However, due to the high matrix toughness associated with… Click to show full abstract

Abstract In the past decade, the research on high strength, high ductility engineered cementitious composites (HSHD-ECC) has drawn much attention worldwide. However, due to the high matrix toughness associated with HSHD-ECC, saturated multiple cracking phenomena was rarely observed, hence hindering its robustness and high strain capacity. In this paper, ECC mixtures with relatively weak matrix were designed to allow much more cracks to be initiated, meanwhile retaining features of high strength, high ductility as well as light weight. The experimental results showed that ECC mixtures with addition of air entraining agent (AEA) increases the compressive/tensile strength slightly, while adding light weight filler (LWF) materials into ECC mixtures show the opposite tendency. However, all ECC mixtures exceed 60 MPa in compressive strength that satisfy the requirement of high strength concrete. In addition, incorporating AEA and LWF materials into HSHD-ECC lowered its matrix toughness and density effectively, as a result, increased its strain capacity and extent of saturated cracking significantly. In particular, the strain capacity of HSHD-ECC with addition of fly ash cenosphere (FAC) could reach 12.5%. At micro-scale level, the fiber/matrix interfacial frictional bond was altered with the matrix design in HSHD-ECC, and the experimental findings well explained the change tendency in tensile strength of five ECC mixtures based on micromechanics theory.

Keywords: hshd ecc; strength; high ductility; high strength; strength high

Journal Title: Construction and Building Materials
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.