LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Flexural strength and failure of geopolymer concrete beams reinforced with carbon fibre-reinforced polymer bars

Photo from wikipedia

Abstract Geopolymer concrete with carbon fibre-reinforced polymer bars can provide a good construction system with high sustainability, high durability and appropriate strength. Few studies have used a combination of these… Click to show full abstract

Abstract Geopolymer concrete with carbon fibre-reinforced polymer bars can provide a good construction system with high sustainability, high durability and appropriate strength. Few studies have used a combination of these materials, especially the carbon fibre-reinforced polymer bar. The present investigation obtains the flexural strength and behaviour of geopolymer concrete and ordinary Portland concrete beams reinforced with carbon fibre-reinforced polymer bars. Twelve beams consisting of nine geopolymer concrete and three ordinary Portland concrete beams were cast and investigated by using the four-point bending test over an effective span of 2000 mm. Reinforcement ratio, compressive strength and concrete types were taken as the variables. First cracking load, ultimate load, load-deflection behaviour, load-strain curve, crack width, number of cracks and modes of failure, were studied. Experimental results were compared with the proposed equations provided by ACI 440.1R-15, CSA S806-12 and the proposed method. Results showed the decrease of deflection and increase of first cracking load with the increase of compressive strength, a slight increase in the deflection of geopolymer concrete beams and nearly the same value of ultimate load were observed; geopolymer concrete beams also recorded a lower value of crack width compared with ordinary Portland concrete beams. ACI 440.1R-15 and CSA S806-12 underestimated the flexural strength of the beams, while the proposed method which based on the parabolic stress block predicted more accurately.

Keywords: strength; concrete beams; concrete; geopolymer concrete; fibre reinforced; carbon fibre

Journal Title: Construction and Building Materials
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.