LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Dynamic friction coefficient between tire and compacted asphalt mixtures using tire-pavement dynamic friction analyzer

Photo from wikipedia

Abstract This study proposes a newly developed real-time testing system, namely, a tire-pavement dynamic friction analyzer (TDFA), to measure the dynamic friction coefficient between tire and pavement. Based on the… Click to show full abstract

Abstract This study proposes a newly developed real-time testing system, namely, a tire-pavement dynamic friction analyzer (TDFA), to measure the dynamic friction coefficient between tire and pavement. Based on the self-developed TDFA, the friction coefficient between tire and pavement can be measured in real-time in the lab. A number of working conditions of tires were mimicked and tested. Subsequently, the effect of parameters such as tire load, tire pressure, actual tire-pavement contact area, tire speed, and slip ratio on pavement friction were investigated. It is found that there is a closely linear correlation between the actual tire-pavement contact area and the dynamic friction coefficient (DFC), and such correlation differs with the variation of pavement types. DFC usually has a negative linear relationship to tire speed. As slip ratio varies from 0% to 100%, the strongest correlation between DFC and Mean profile depth (MPD) can be found at the interval of 10%–15% slip ratio, which indicates that the pavement macrotexture also plays a role in the peak value of friction coefficient for the asphalt pavement. This testing method is very promising for the estimation of friction properties of pavement in the phase of lab mix design. It may also be used in the materials selection for pavement design.

Keywords: tire; friction coefficient; friction; tire pavement; dynamic friction

Journal Title: Construction and Building Materials
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.