LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Experimental investigation on the mechanical properties and microstructure of hybrid fiber reinforced recycled aggregate concrete

Abstract The use of recycled aggregates in structural concrete is a sustainable solution to reduce the exploitation of natural resources and the harmful environmental effects of concrete waste. The present… Click to show full abstract

Abstract The use of recycled aggregates in structural concrete is a sustainable solution to reduce the exploitation of natural resources and the harmful environmental effects of concrete waste. The present study aimed to improve the mechanical performance of recycled aggregate concrete (RAC) by incorporating hybrid steel and polypropylene fibers. Sixteen concrete mixtures with different volume fractions of steel and polypropylene fibers were tested. Mechanical properties were studied by conducting the compressive strength, splitting tensile strength, flexural strength and flexural toughness as well as impact resistance. Additionally, the microstructures of interfacial transition zone (ITZ) at aggregate/cement paste and fiber/cement paste were investigated through the scanning electron microscope (SEM). Results indicated that the incorporation of polypropylene fibers resulted in a minor change in compressive strength of RAC. Whereas, the steel fibers significantly increased compressive and flexural ductility and impact resistance especially in the mixtures made with hybrid steel and polypropylene fibers. The use of hybrid steel and polypropylene fibers exhibited an excellent coupling effect on the mechanical properties of RAC that was better than steel fiber and polypropylene fiber. Among all the mixtures with different volume fractions of steel fibers and polypropylene fibers, the hybrid fiber reinforced RAC specimen containing 1.5% steel fibers and 0.9% polypropylene fibers exhibited the best mechanical properties. SEM investigations showed that the incorporation of fibers into RAC could not only make an overall improvement in the density and uniformity of cement paste, but also improved the microstructures of ITZ. Moreover, the bonding between steel fiber and cement paste was found to be tight, and the interfacial zone was integral and dense. These observations provide insight into the benefits of different fiber reinforcement systems to the mechanical performance of RAC which is considered to have poorer quality compared with natural aggregates concrete.

Keywords: polypropylene fibers; fiber; recycled aggregate; mechanical properties; steel

Journal Title: Construction and Building Materials
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.