LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Water permeability of unsaturated cementitious materials: A review

Photo from wikipedia

Abstract Engineering structures of concrete are generally recognized to be rarely fully water-saturated. The water transportation process in unsaturated cementitious materials offers therefore a relevant problem the understanding of which… Click to show full abstract

Abstract Engineering structures of concrete are generally recognized to be rarely fully water-saturated. The water transportation process in unsaturated cementitious materials offers therefore a relevant problem the understanding of which can be crucial in assessing concrete’s degradation and failure mechanisms. In recent years, the number of published papers on this topic is significantly increased. This review presents the latest advancements in determining water permeability of unsaturated cement-based materials by experimental methods and numerical modelling. The effects are summarized of water-cement ratio (w/c), curing age, particle size distribution, interfacial transition zone (ITZ) and supplementary cementitious materials (SCMs) on the permeability of partially saturated cement-based materials. Next, the underlying relationship between relative water permeability and pore structure is presented and discussed. Additionally, an insight into water transport mechanism of unsaturated concrete is proposed. Finally, some evaluative conclusions are drawn that can be instrumental for setting up future studies.

Keywords: water permeability; water; permeability unsaturated; cementitious materials; permeability; unsaturated cementitious

Journal Title: Construction and Building Materials
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.