LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Autogenous shrinkage and nano-mechanical properties of UHPC containing waste brick powder derived from construction and demolition waste

Photo from wikipedia

Abstract Using recycled brick powder (RBP) as an alternative material in cement-based materials is an effective way to make high-value utilization of construction and demolition (C&D) waste. In this study,… Click to show full abstract

Abstract Using recycled brick powder (RBP) as an alternative material in cement-based materials is an effective way to make high-value utilization of construction and demolition (C&D) waste. In this study, RBP was used to replace part of silica fume (SF) to improve the volume stability and environmental benefits of ultra-high performance concrete (UHPC), and the influence of different RBP contents on the mechanical strength, autogenous shrinkage, and microstructure of UHPC mixture was explored. The results show that although using 30–45% of RBP to replace SF reduces the strengths, an appropriate amount of RBP (15%) can significantly improve the mechanical strength of UHPC. Meanwhile, as the replacement rate of RBP increases, the autogenous shrinkage of UHPC decreases significantly. In addition, the incorporation of 15% RBP improves the solid packing state, and the internal curing effect of RBP improves the performance of the interface transition zone. From the perspective of nano-scale characteristics, the appropriate amount of RBP (15%) reduces the content of unhydrated phase, pore phase and high-density C-S-H in the matrix, while makes the ultra high-density C-S-H content increase significantly. Furthermore, UHPC mixed with 15% RBP shows lower cost and CO2-e emission. Therefore, it is feasible to use 15% RBP to replace SF to produce eco-friendly UHPC mixture.

Keywords: construction; waste; rbp; brick powder; autogenous shrinkage

Journal Title: Construction and Building Materials
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.