LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Design and implementation of a neuro-adaptive backstepping controller for buck converter fed PMDC-motor

Photo by tronle_sg from unsplash

Abstract A neuro-adaptive backstepping control (NABSC) method using single-layer Chebyshev polynomial based neural network is proposed for the angular velocity tracking in buck converter fed permanent magnet dc (PMDC)-motor. Owing… Click to show full abstract

Abstract A neuro-adaptive backstepping control (NABSC) method using single-layer Chebyshev polynomial based neural network is proposed for the angular velocity tracking in buck converter fed permanent magnet dc (PMDC)-motor. Owing to their universal approximation property, neural networks have been utilized for approximating the unknown nonlinear profile of instantaneous load torque. The inherent computational complexity of the neural network based adaptive scheme has been circumvented through the use of orthogonal Chebyshev polynomials as basis functions. A detailed stability and transient performance analysis has been conducted using Lyapunov stability criteria. The proposed control scheme is shown to yield a superior output performance with enhanced robustness for wide variations in load torque and set-point changes, compared to existing conventional approaches based on adaptive backstepping. The theoretical propositions are verified on an experimental prototype using dSPACE, Control Desk DS1103 setup with an embedded TM320F240 Digital Signal Processor proving its applicability to real-time electrical systems. The efficiency of the proposed strategy is quantified using performance measures and are evaluated against the conventional adaptive backstepping control (ABSC) methodology. Ultimately, this investigation confirms the effectiveness of the proposed control scheme in achieving an enhanced output transient performance while faithfully realizing its control objective in the event of abrupt and uncertain load variations.

Keywords: pmdc motor; buck converter; control; neuro adaptive; converter fed; adaptive backstepping

Journal Title: Control Engineering Practice
Year Published: 2017

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.