LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Optimized techniques for driving and control of the switched reluctance motor to improve efficiency

Photo from wikipedia

Abstract This work presents modeling, driving and classical speed control techniques for the switched reluctance motor. The aim is to improve the computational model, the control response and the machine… Click to show full abstract

Abstract This work presents modeling, driving and classical speed control techniques for the switched reluctance motor. The aim is to improve the computational model, the control response and the machine efficiency. A parametric regression model was used to find the inductance profile of the switched reluctance motor and from the new inductance profile model. The drive and control techniques are shown: (i) with speed control acting on the excitation voltage and fixed switching angles, (ii) with speed control acting on the switching angles and fixed excitation voltage and (iii) with speed control acting on the excitation voltage, in this case, with dynamic switching angles and controller parameters. The inductance profile is represented by expression and inserted into the machine computer model, allowing greater precision and low computational cost. The speed control acting on the excitation voltage with dynamic controller parameters and dynamic switching angles allowed: (i) shorter response time for a wide range of control, (ii) higher efficiency, (iii) low computational cost and (iv) simplified implementation and maintenance. The techniques proposed in this work obtained precision of the computational model with respect to the system (in workbench) and optimized parameters in a wide range of the speed control, allowing an improvement of switched reluctance motor efficiency.

Keywords: switched reluctance; reluctance motor; speed control; control

Journal Title: Control Engineering Practice
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.