In recent years, our understanding about bacterial persistence has significantly advanced: we comprehend the persister phenotype better, more triggers for persistence entry have been found, and more insights in the… Click to show full abstract
In recent years, our understanding about bacterial persistence has significantly advanced: we comprehend the persister phenotype better, more triggers for persistence entry have been found, and more insights in the involvement and role of toxin-antitoxin systems and other molecular mechanisms have been unravelled. In this review, we attempt to put these findings into an integrated, system-level perspective. From this point of view, persistence can be seen as a response to a strong perturbation of metabolic homeostasis, either triggered environmentally, or by means of intracellular stochasticity. Metabolic-flux-regulated resource allocation ensures stress protection, and several feedback mechanisms stabilize the cells in this protected state. We hope that this novel view can advance our understanding about persistence.
               
Click one of the above tabs to view related content.