LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Harnessing lignin evolution for biotechnological applications.

Photo by sxy_selia from unsplash

Lignin evolved concomitantly with the rise of vascular plants on planet earth ∼450 million years ago. Several iterations of exploiting ancestral phenylpropanoid metabolism for biopolymers occurred prior to lignin that… Click to show full abstract

Lignin evolved concomitantly with the rise of vascular plants on planet earth ∼450 million years ago. Several iterations of exploiting ancestral phenylpropanoid metabolism for biopolymers occurred prior to lignin that facilitated early plants' adaptation to terrestrial environments. The first true lignin was constructed via oxidative coupling of a number of simple phenylpropanoid alcohols to form a sturdy polymer that supports long-distance water transport. This invention has directly contributed to the dominance of vascular plants in the Earth's flora, and has had a profound impact on the establishment of the rich terrestrial ecosystems as we know them today. Within vascular plants, new lignin traits continued to emerge with expanded biological functions pertinent to host fitness under complex environmental niches. Understanding the chemical and biochemical basis for lignin's evolution in diverse plants therefore offers new opportunities and tools for engineering desirable lignin traits in crops with economic significance.

Keywords: harnessing lignin; vascular plants; lignin; evolution biotechnological; lignin evolution

Journal Title: Current opinion in biotechnology
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.