LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Enzymes in biotechnology: Critical platform technologies for bioprocess development.

Photo by sxy_selia from unsplash

Enzymes are core elements of biosynthetic pathways employed in the synthesis of numerous bioproducts. Here, we review enzyme promiscuity, enzyme engineering, enzyme immobilization, and cell-free systems as fundamental strategies of… Click to show full abstract

Enzymes are core elements of biosynthetic pathways employed in the synthesis of numerous bioproducts. Here, we review enzyme promiscuity, enzyme engineering, enzyme immobilization, and cell-free systems as fundamental strategies of bioprocess development. Initially, promiscuous enzymes are the first candidates in the quest for new activities to power new, artificial, or bypass pathways that expand substrate range and catalyze the production of new products. If the activity or regulation of available enzymes is unsuitable for a process, protein engineering can be applied to improve them to the required level. When cell toxicity and low productivity cannot be engineered away, cell-free systems are an attractive option, especially in combination with enzyme immobilization that allows extended enzyme use. Overall, the above methods support powerful platforms for bioprocess development and optimization.

Keywords: biotechnology critical; platform technologies; critical platform; bioprocess development; development; enzymes biotechnology

Journal Title: Current opinion in biotechnology
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.