LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Modeling of interspecies electron transfer in anaerobic microbial communities.

Photo by sxy_selia from unsplash

Interspecies electron transfer (IET) is a key phenomenon in anaerobic ecosystems, which is traditionally modeled as hydrogen transfer. Recently discovered alternative mediated IET (MIET) or direct IET (DIET) offer exciting… Click to show full abstract

Interspecies electron transfer (IET) is a key phenomenon in anaerobic ecosystems, which is traditionally modeled as hydrogen transfer. Recently discovered alternative mediated IET (MIET) or direct IET (DIET) offer exciting alternative mechanisms of microbial partnerships that could lead to new strategies for the improvement of biotechnologies. Here, we analyze mathematical modeling of DIET and MIET in anaerobic ecosystems. Bioenergetics approaches already enable the evaluation of different energy sharing scenarios between microorganisms and give interesting clues on redox mediators and on possible ways of driving microbial communities relying on IET. The modeling of DIET kinetics however is currently only in its infancy. Recent concepts introduced for the modeling of electroactive biofilms should be further exploited. Recent modeling examples confirms the potential of DIET to increase the IET rates compared to H2-MIET, but also point out the need for additional characterizations of biological components supporting IET to improve predictions.

Keywords: interspecies electron; electron transfer; transfer; transfer anaerobic; microbial communities; modeling interspecies

Journal Title: Current opinion in biotechnology
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.