LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Identification of novel membrane proteins for improved lignocellulose conversion.

Photo from wikipedia

Lignocellulose processing yields a heterogeneous mixture of substances, which are poorly utilized by current industrial strains. For efficient valorization of recalcitrant biomass, it is critical to identify and engineer new… Click to show full abstract

Lignocellulose processing yields a heterogeneous mixture of substances, which are poorly utilized by current industrial strains. For efficient valorization of recalcitrant biomass, it is critical to identify and engineer new membrane proteins that enable the broad uptake of hydrolyzed substrates. Whereas glucose consumption rarely presents a bottleneck for cell factories, there is also a lack of transporters that allow co-consumption of glucose with other abundant biomass sugars such as xylose. This review discusses recent efforts to bioinformatically identify membrane proteins of high biotech potential for lignocellulose conversion and metabolic engineering in both model and nonconventional organisms. Of particular interest are transporters sourced from anaerobic gut fungi resident to large herbivores, which produce Sugars Will Eventually be Exported Transporters (SWEETs) that enhance xylose transport in the yeast Saccharomyces cerevisiae and enable glucose and xylose co-utilization. Additionally, recently identified fungal cellodextrin transporters are valuable alternatives to mitigate glucose repression and transporter inhibition.

Keywords: membrane proteins; identification novel; novel membrane; membrane; lignocellulose conversion

Journal Title: Current opinion in biotechnology
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.