To overcome egg protective vestments and ensure successful fertilization, mammalian spermatozoa switch symmetrical progressive motility to a powerful, whip-like flagellar motion, known as hyperactivation. The latter is triggered by a… Click to show full abstract
To overcome egg protective vestments and ensure successful fertilization, mammalian spermatozoa switch symmetrical progressive motility to a powerful, whip-like flagellar motion, known as hyperactivation. The latter is triggered by a calcium influx through the sperm-specific, voltage-dependent, and alkalization-activated calcium channel of sperm - CatSper. The channel comprises nine subunits which together form a heteromeric complex. CatSper-deficient male mice and men with mutations in CatSper genes are infertile. This calcium channel is regulated by various endogenous compounds, such as steroids, prostaglandins, endocannabinoids, and intracellular pH. Being a sperm-specific ion channel that is not expressed anywhere else in the body, CatSper represents an ideal target for the development of female and even male contraceptives. In this review, we discuss the recent advances in studying CatSper functional properties and discuss future steps that are required to take in order to achieve a deep understanding of the molecular basis of CatSper function.
               
Click one of the above tabs to view related content.