Abstract The linear and nonlinear properties of isomeric forms of pyridinium-N-phenoxide betaine dye were investigated in protic and aprotic solvents using atomistic simulations. We employed the sequential Quantum Mechanics/Molecular Mechanics… Click to show full abstract
Abstract The linear and nonlinear properties of isomeric forms of pyridinium-N-phenoxide betaine dye were investigated in protic and aprotic solvents using atomistic simulations. We employed the sequential Quantum Mechanics/Molecular Mechanics (S-QM/MM) and the free energy gradient (FEG) methods to optimize the geometry of each isomer in chloroform, acetonitrile, methanol and water. The results show a complex dependence of the first hyperpolarizability with respect to the solvent nature and isomeric form, with a marked effect of conformational changes for para-betaine. Large contrasts of the first hyperpolarizability show a clear distinction between isomeric forms in solution that could be experimentally detected.
               
Click one of the above tabs to view related content.