LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Preparation and mechanical properties of graphene-reinforced alumina-matrix composites

Photo from archive.org

Abstract Monolithic Al2O3 and graphene-reinforced Al2O3 ceramic-matrix nanocomposites were fabricated with the help of spark plasma sintering (SPS). Density, hardness, bending strength, fracture toughness and microstructure of the sintered samples… Click to show full abstract

Abstract Monolithic Al2O3 and graphene-reinforced Al2O3 ceramic-matrix nanocomposites were fabricated with the help of spark plasma sintering (SPS). Density, hardness, bending strength, fracture toughness and microstructure of the sintered samples were studied. The contents of graphene were 0–1.6 wt%. The strengthening and toughening mechanisms of the composites were discussed in detail. The results showed that the density of the composites varied from 99.7% to 98.7%. 0.4–1.6 wt% of graphene was homogeneously distributed in the matrix. The structural stability of graphene was analyzed by Raman spectroscopy. The bending strength of the nanocomposite reached the maximum when graphene content was 0.4 wt%. The fracture toughness of the composites also increased when the addition of graphene was between 0.4 and 1.6 wt% as compared to monolithic alumina. Different types of toughening mechanisms were observed including; micro-cracks, graphene pull-out, crack deflection and crack bridging.

Keywords: graphene reinforced; matrix; graphene; preparation mechanical; properties graphene; mechanical properties

Journal Title: Chemical Physics Letters
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.