LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

The effect of framework functionality on the catalytic activation of supported Pd nanoparticles in the Mizoroki–Heck coupling reaction

Photo from wikipedia

Abstract Palladium nanoparticles (Pd-NPs) were supported on functional and nonfunctional Co-coordination polymers (Pd/CoBDCNH2 and Pd/CoBDC). Advanced analytical techniques revealed that Pd-NPs are supported on the external surface of the polymer… Click to show full abstract

Abstract Palladium nanoparticles (Pd-NPs) were supported on functional and nonfunctional Co-coordination polymers (Pd/CoBDCNH2 and Pd/CoBDC). Advanced analytical techniques revealed that Pd-NPs are supported on the external surface of the polymer framework and the functionalized framework possesses effective influence to prevent Pd-NP aggregation. Supported Pd-NPs were effectively applied as heterogeneous recyclable catalysts in the Mizoroki–Heck C–C cross coupling reactions of iodobenzene and either aromatic or aliphatic terminal alkenes. Catalytic results exhibited that highly dispersed Pd-NPs with low loading (1%) on the functional polymer (Pd/CoBDCNH2) are more effective than aggregated Pd-NPs with high loading (9%) on the nonfunctional polymer (Pd/CoBDC). Both catalysts can simultaneously provide high activity and selectivity to E-coupled products, high efficiency in low amounts, easy separation of heterogeneous catalyst and appropriate performance in the recycling reaction without addition of a reducing agent.

Keywords: framework functionality; framework; effect framework; reaction; mizoroki heck

Journal Title: Comptes Rendus Chimie
Year Published: 2017

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.