Chilling sensitivity in oocytes of the zebrafish represents a potential obstacle to their successful cryopreservation. Here, we report the first cryomicroscopic observations of the response of zebrafish oocytes to chilling… Click to show full abstract
Chilling sensitivity in oocytes of the zebrafish represents a potential obstacle to their successful cryopreservation. Here, we report the first cryomicroscopic observations of the response of zebrafish oocytes to chilling conditions. In activated stage V oocytes that had been exposed to hypothermic temperatures, we observed a latent effect of chilling, manifesting as a granular precipitate that appeared in the perivitelline fluid upon return to 28.5 °C. The granules were visible in unstained oocytes under transmitted light microscopy, and the resulting perivitelline turbidity increased in a dose-dependent manner with decreasing chilling temperature (p < 0.001), as well as with increasing time of hypothermic exposure (p < 0.0001). The change in appearance of the perivitelline space in oocytes that had been chilled and rewarmed became statistically significant after a 7-min exposure to 10 °C and after only 30 s at 1 °C (p < 0.05). Thus, even moderate chilling exposures can lead to detectable changes in activated zebrafish oocytes.
               
Click one of the above tabs to view related content.