LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Thermal analysis of marginal conditions to facilitate cryopreservation by vitrification using a semi-empirical approach.

Photo from wikipedia

This study aims at the thermal analysis of marginal conditions leading to cryopreservation by vitrification, which appears to be the only alternative for indefinite preservation of large-size tissues and organs.… Click to show full abstract

This study aims at the thermal analysis of marginal conditions leading to cryopreservation by vitrification, which appears to be the only alternative for indefinite preservation of large-size tissues and organs. The term "marginal conditions" here refers to cooling rates in close range with the so-called critical cooling rate, above which crystallization is avoided. The analysis of thermal effects associated with partial crystallization during vitrification is associated with the coupled phenomena of heat transfer and kinetics of crystallization. This study takes a practical, semi-empirical approach, where heat transfer is analyzed based on its underlying theoretical principles, while the thermal effects associated with partial crystallization are taken into account by means of empirical correlations. This study presents a computation framework to solve the coupled problem, while presenting a proof-of-concept for DP6 as a representative cryoprotective agent. The thermal effects associated with crystallization at various relevant cooling rates are measured in this study by means of differential scanning calorimetry. Results of this study demonstrate that, due to the thermal effects associated with partial crystallization, the cooling rate at the center of a large organ may lag behind the cooling rate in its surroundings under some scenarios, but may also exceed the surroundings cooling rate in other scenarios, leading to counter-intuitive effects associated with partial crystallization.

Keywords: thermal analysis; crystallization; effects associated; vitrification; marginal conditions

Journal Title: Cryobiology
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.