LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Influence of pre-strain on cryogenic tensile properties of 316LN austenitic stainless steel

Photo by mat_graphik from unsplash

Abstract In the present work, influences of room temperature tensile pre-strain on cryogenic tensile properties of 316LN austenitic stainless steel (SS) were investigated. The tensile properties of the 316LN SS… Click to show full abstract

Abstract In the present work, influences of room temperature tensile pre-strain on cryogenic tensile properties of 316LN austenitic stainless steel (SS) were investigated. The tensile properties of the 316LN SS with various tensile pre-straining amounts of 15%, 25% and 35% were measured at both room temperature (RT) and liquid helium temperature (4.2 K). Results indicated that both 0.2% proof strength (Rp0.2) and ultimate tensile strength (Rm) at both RT and 4.2 K of the pre-strained 316LN SS significantly increased compared to those of the as-received material. The Rp0.2 and Rm at 4.2 K for 35% pre-strained specimens increased around 86% and 18%, respectively, compared to those of the as-received material. However, the elongation at fracture (A) at both RT and 4.2 K decreased for the pre-strained 316LN SS compared to those of the as-received material. The fractured morphologies of the pre-strained 316LN SS were investigated by means of scanning electron microscopy (SEM) and transmission electron microscopy (TEM). Dimples in the surface fractured at both RT and 4.2 K of the as-received and pre-strained 316LN exhibited a ductile fracture mode. Moreover, fractographic results indicated that the pre-strain treatment considerably decreased the ductility at both RT and 4.2 K. TEM analyses revealed that pre-strain treatment at RT led to dislocation accumulation and stress-induced martensite phase occurred at 4.2 K, which interpreted the cryogenic tensile properties of the pre-strained 316LN SS.

Keywords: tensile properties; pre strain; pre strained; pre

Journal Title: Cryogenics
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.