LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

SEGN: Inferring real-time gene networks mediating phenotypic plasticity

Photo by jontyson from unsplash

The capacity of an organism to alter its phenotype in response to environmental perturbations changes over developmental time and is a process determined by multiple genes that are co-expressed in… Click to show full abstract

The capacity of an organism to alter its phenotype in response to environmental perturbations changes over developmental time and is a process determined by multiple genes that are co-expressed in intricate but organized networks. Characterizing the spatiotemporal change of such gene networks can offer insight into the genomic signatures underlying organismic adaptation, but it represents a major methodological challenge. Here, we integrate the holistic view of systems biology and the interactive notion of evolutionary game theory to reconstruct so-called systems evolutionary game networks (SEGN) that can autonomously detect, track, and visualize environment-induced gene networks along the time axis. The SEGN overcomes the limitations of traditional approaches by inferring context-specific networks, encapsulating bidirectional, signed, and weighted gene-gene interactions into fully informative networks, and monitoring the process of how networks topologically alter across environmental and developmental cues. Based on the design principle of SEGN, we perform a transcriptional plasticity study by culturing Euphrates poplar, a tree that can grow in the saline desert, in saline-free and saline-stress conditions. SEGN characterize previously unknown gene co-regulation that modulates the time trajectories of the trees’ response to salt stress. As a marriage of multiple disciplines, SEGN shows its potential to interpret gene interdependence, predict how transcriptional co-regulation responds to various regimes, and provides a hint for exploring the mass, energetic, or signal basis that drives various types of gene interactions.

Keywords: plasticity; gene networks; time; gene; segn inferring

Journal Title: Computational and Structural Biotechnology Journal
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.