LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Thermal performance analysis and experimental study of high-speed motorized spindle based on the gradient descent method

Photo from wikipedia

Abstract The high-speed motorized spindle is the core component of high-speed and high-precision machining, and its compact structure leads to internal heat accumulation and thermal deformation. Therefore, it is of… Click to show full abstract

Abstract The high-speed motorized spindle is the core component of high-speed and high-precision machining, and its compact structure leads to internal heat accumulation and thermal deformation. Therefore, it is of great significance to control the temperature rise of the motorized spindle. In order to effectively control the temperature rise of the motorized spindle, a new spiral cooling system is used to analyze the internal heat transfer mechanism of the high-speed motorized spindle, and the heat transfer coefficients of the spiral cooling system and the motorized spindle system are optimized based on the gradient descent method combined with experimental data. The optimized heat transfer coefficient is taken as the boundary condition of the finite element model, and the temperature field prediction model is established to analyze the influence of the spiral cooling system on the temperature field of the motorized spindle. Through experiments, the cooling capacity of the spiral cooling system is verified, and the optimized temperature field simulation data are compared with the experimental data to verify the feasibility of the gradient descent method in constructing the temperature field prediction model of the motorized spindle. It provides a basis for the intelligent control of the thermal performance of the motorized spindle.

Keywords: speed motorized; descent method; gradient descent; motorized spindle; high speed

Journal Title: Case Studies in Thermal Engineering
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.