LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

In Vivo Measurement of Glycine Receptor Turnover and Synaptic Size Reveals Differences between Functional Classes of Motoneurons in Zebrafish

Photo from wikipedia

The interplay between binding and unbinding of synaptic receptor proteins at synapses plays an important role in determining receptor concentration and synaptic strength, with known links between changes in binding kinetics… Click to show full abstract

The interplay between binding and unbinding of synaptic receptor proteins at synapses plays an important role in determining receptor concentration and synaptic strength, with known links between changes in binding kinetics and synaptic plasticity. The regulation of such kinetics may subserve the specific functional requirements of neurons in intact circuits. However, the majority of studies of synaptic turnover kinetics have been performed in cultured neurons outside the context of normal circuits, and synaptic receptor turnover has not been measured at individual synaptic sites in vivo. We quantified the distribution of glycinergic receptor dynamics using fluorescence recovery after photoconversion of synapses in intact zebrafish and correlated recovery kinetics to synaptic volume in two functionally distinct classes of cells: primary and secondary motoneurons. The rate of fluorescence recovery after photoconversion decreased with synaptic volume in both types of motoneurons, with larger synapses having slower recovery. Primary motoneurons had both larger synapses and associated slower recovery times than secondary motoneurons. Our results suggest that synaptic kinetics are regulated in concert with synaptic sizes and reflect the functional role played by neurons within their circuit.

Keywords: recovery; turnover; vivo measurement; receptor turnover; measurement glycine; receptor

Journal Title: Current Biology
Year Published: 2017

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.