LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Simultaneous Regulation of Cytokinetic Furrow and Nucleus Positions by Cortical Tension Contributes to Proper DNA Segregation during Late Mitosis

Photo from wikipedia

Coordinating mitotic spindle and cytokinetic furrow positioning is essential to ensure proper DNA segregation. Here, we present a novel mechanism, which corrects DNA segregation defects due to cytokinetic furrow mispositioning… Click to show full abstract

Coordinating mitotic spindle and cytokinetic furrow positioning is essential to ensure proper DNA segregation. Here, we present a novel mechanism, which corrects DNA segregation defects due to cytokinetic furrow mispositioning during the first division of C. elegans embryos. Correction of DNA segregation defects due to an abnormally anterior cytokinetic furrow relies on the concomitant and opposite displacements of the furrow and of the anterior nucleus toward the posterior and anterior poles of the embryo, respectively. It also coincides with cortical blebbing and an anteriorly directed cytoplasmic flow. Although microtubules contribute to nuclear displacement, relaxation of an excessive tension at the anterior cortex plays a central role in the correction process and simultaneously regulates cytoplasmic flow as well as nuclear and furrow displacements. This work thus reveals the existence of a so-far uncharacterized correction mechanism, which is critical to correct DNA segregation defects due to cytokinetic furrow mispositioning.

Keywords: cytokinetic furrow; dna segregation; tension; proper dna; furrow

Journal Title: Current Biology
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.