LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

IFN-β reduces NRP-1 expression on human cord blood monocytes and inhibits VEGF-induced chemotaxis.

Photo from wikipedia

Type I interferons (IFNs) inhibit angiogenesis, the sprouting of new blood vessels, during tissue development, remodeling, and tumor growth. One of the major targets type I IFNs inhibit are circulating… Click to show full abstract

Type I interferons (IFNs) inhibit angiogenesis, the sprouting of new blood vessels, during tissue development, remodeling, and tumor growth. One of the major targets type I IFNs inhibit are circulating monocytes, which promote vascular development by secreting growth factors, chemokines, and proteases. This study tested the hypothesis that IFN-β directly inhibits monocyte chemotaxis towards VEGF. We were interested in looking at chemotaxis towards VEGF because VEGF is known to create a pro-angiogenesis environment by acting as a stimulator and chemotactic factor for endothelial cells and monocytes. Here, we demonstrate that IFN-β, a type I IFN, downregulates neuropilin-1 (NRP-1) expression by human monocytes and inhibits chemotaxis induced by vascular endothelial growth factor (VEGF), a NRP-1 ligand. Together, the data suggest that IFN-β directly downregulates NRP-1 expression in monocytes, thus inhibiting monocyte chemotaxis toward a VEGF enriched environment.

Keywords: vegf; ifn; expression human; nrp expression; chemotaxis

Journal Title: Cytokine
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.