As an invasive pest, the complete and effective innate immune system is crucial for the nipa palm hispid beetle Octodonta nipae (Maulik) to adjust to new environments. C-type lectins (CTLs)… Click to show full abstract
As an invasive pest, the complete and effective innate immune system is crucial for the nipa palm hispid beetle Octodonta nipae (Maulik) to adjust to new environments. C-type lectins (CTLs) are large families of carbohydrate-binding proteins that possess one or more characteristic carbohydrate-recognition domains (CRD) and function as pattern-recognition receptors, which play important roles in mediating humoral and cellular immunity. In the present study, for the first time, we report two CTL-Ss (single-CRD CTLs) from O. nipae (Maulik) (designated OnCTL1 and OnCTL2). The two CTL-Ss share high identity at conserved amino acids associated with conserved carbohydrate binding sites Gln-Pro-Asp (QPD) motifs and clearly show a 1:1 orthologous relationship in insects, which endow them with functional conservation and diversification. mRNA abundance analysis showed that OnCTL1 was upregulated upon Staphylococcus aureus and Escherichia coli challenge at 6 and 12 h, while OnCTL2 underwent no changes upon E. coli challenge and was even downregulated after S. aureus infection. Knockdown of OnCTL1 significantly decreased the transcripts of two key serine proteases (prophenoloxidase activating factors), OnPPAF1 and OnPPAF3, followed by the reduction of haemolymph phenoloxidase activity; it also increased the expression of Defensin 2B. In contrast, silencing of OnCTL2 significantly decreased the expression of Defensin 2B and Attacin 3C, the encapsulation index, and the phagocytosis rate compared to the dsEGFP group. The spreading results showed that more irregularly shaped plasmatocytes and lower levels of aggregation were found in OnCTL2-silenced pupae than in the dsOnCTL1 and dsEGFP groups. We can infer from the results of this study that the two OnCTLs play important roles in the immune system and generate a functional division: OnCTL1 seems to function more in humoral immunity including mediating bacterial recognition and activating the phenoloxidase cascade, and OnCTL2 plays a greater role in enhancing cellular immunity. These observations could replenish information on the functional diversification of insect CTLs, and also provide valuable information to unravel the immunity in O. nipae.
               
Click one of the above tabs to view related content.