The inflammatory response is a self-defense process that fights the pathogen invasion by eliminating harmful stimuli. However, excessive inflammation may disrupt immune homeostasis, even causing chronic inflammation or autoimmune diseases.… Click to show full abstract
The inflammatory response is a self-defense process that fights the pathogen invasion by eliminating harmful stimuli. However, excessive inflammation may disrupt immune homeostasis, even causing chronic inflammation or autoimmune diseases. MicroRNAs (miRNAs) are a crucial regulator that can negatively regulate gene expression and participate in multiple biological processes of growth, development, and immune response in organisms. However, the miRNA-mediated modulation networks of inflammatory responses remain largely unclear in lower vertebrates. In this study, miR-128 was identified as a negative regulator to participate in the NF-κB signaling pathway by targeting TAB2 in miiuy croaker. First, we predicted target genes of miR-128 through the bioinformatics software programs and found that TAB2 is a direct target of miR-128. We also found that miR-128 can inhibit TAB2 expression at the mRNA and protein levels. Besides, upon LPS stimulation, miR-128 inhibits the expression of inflammatory cytokines by targeting TAB2 to avoid excessive inflammation. Particularly, we found that miR-128 can regulate TAB2-mediated NF-κB signaling pathways. In summary, our results indicate that miR-128 plays a critical role in suppressing inflammatory responses by regulating the TAB2-mediated NF-κB signaling pathway in miiuy croaker.
               
Click one of the above tabs to view related content.