LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Long noncoding RNAs: Emerging players regulating innate immune memory in the red flour beetle.

Photo from wikipedia

A variety of strategies have been evolved to eradicate invading microbes. Phagocytes have developed in vertebrates and invertebrates to confer a non-specific immune response to pathogens. Besides, vertebrates have evolved… Click to show full abstract

A variety of strategies have been evolved to eradicate invading microbes. Phagocytes have developed in vertebrates and invertebrates to confer a non-specific immune response to pathogens. Besides, vertebrates have evolved lymphocytes to develop memory cells that can quickly respond upon the next exposure to the same pathogen. Although lymphocytes are absent in invertebrates, historical evidence, dating back to the 1920s, indicated the presence of immune memory in invertebrates. However, the concept of long-lasting non-specific defense predominated until recent evidence has been introduced in the first decade of the 21st century. Although more evidence has been introduced later, the molecular mechanism undergoing the innate immune memory is largely undefined in invertebrates. Long noncoding RNAs (lncRNAs) have demonstrated a role in regulating various biological processes, including immune response. In this review, we will explore the potential role of lncRNAs in developing innate immune memory in the red flour beetle (Tribolium castaneum).

Keywords: long noncoding; memory red; immune memory; noncoding rnas; innate immune; memory

Journal Title: Developmental and comparative immunology
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.