LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Electrospun dual-layer nonwoven membrane for desalination by air gap membrane distillation

Photo from wikipedia

Abstract In the present study, dual-layer nanofiber nonwoven membranes were prepared by a facile electrospinning technique and applied for desalination by air gap membrane distillation (AGMD). Neat single and dual-layer… Click to show full abstract

Abstract In the present study, dual-layer nanofiber nonwoven membranes were prepared by a facile electrospinning technique and applied for desalination by air gap membrane distillation (AGMD). Neat single and dual-layer nanofiber membranes composed of a hydrophobic polyvinylidene fluoride-co-hexafluoropropylene (PH) top layer with different supporting hydrophilic layer made of either polyvinyl alcohol (PVA), nylon-6 (N6), or polyacrylonitrile (PAN) nanofibers were fabricated with and without heat-press post-treatment. Surface characterization showed that the active layer (i.e., PH) of all electrospun nanofiber membranes (ENMs) exhibited a rough, highly porous (> 80% porosity), and hydrophobic surface (CA > 140°), while the other side was hydrophilic (CA   129 μm to 2 and the thickness of the air gap was 3 mm. The neat single and dual-layer ENMs showed a water permeate flux of about 10.9–15.5 L/m 2  h (LMH) using 3.5 wt.% NaCl solution as feed, which was much higher than that of a commercial PVDF membrane (~ 5 LMH). The provision of a hydrophilic layer at the bottom layer enhanced the AGMD performance depending on the wettability and characteristics of the support layer. The PH/N6 dual-layer nanofiber membrane prepared under the optimum condition showed flux and salt rejection of 15.5 LMH and 99.2%, respectively, which has good potential for AGMD application.

Keywords: dual layer; layer; desalination; air gap; membrane

Journal Title: Desalination
Year Published: 2017

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.