LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

An ECM-to-Nucleus Signaling Pathway Activates Lysosomes for C. elegans Larval Development.

Photo by tcwillmott from unsplash

Lysosomes degrade macromolecular cargos, recycle catabolites, and serve as signaling platforms to maintain cell homeostasis, but their role at the tissue level is unclear. Here, we investigate lysosome regulation and… Click to show full abstract

Lysosomes degrade macromolecular cargos, recycle catabolites, and serve as signaling platforms to maintain cell homeostasis, but their role at the tissue level is unclear. Here, we investigate lysosome regulation and function during C. elegans molting, a specialized extracellular matrix (ECM) remodeling process essential for larval development. We found that lysosomes are specifically activated in the epidermis at molt when the apical ECM (cuticle) is being replaced. Impaired lysosome function affects endocytic cargo degradation, suppresses elevated protein synthesis at molt, and causes molting defects. Disturbance of ECM-epidermis attachments triggers lysosomal activation and induces expression of the vacuolar H+-ATPase (V-ATPase), which is mediated by the GATA transcription factor ELT-3 and the STAT family protein STA-2. Our study reveals an ECM-to-nucleus signaling pathway that activates lysosomes to facilitate ECM remodeling essential for larval development.

Keywords: nucleus signaling; signaling pathway; ecm nucleus; larval development; development; pathway activates

Journal Title: Developmental cell
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.