LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Metabolic Changes Accompanying Spermatogonial Stem Cell Differentiation.

Photo from wikipedia

Male fertility is driven by spermatogonial stem cells (SSCs) that self-renew while also giving rise to differentiating spermatogonia. Spermatogonial transitions are accompanied by a shift in gene expression, however, whether… Click to show full abstract

Male fertility is driven by spermatogonial stem cells (SSCs) that self-renew while also giving rise to differentiating spermatogonia. Spermatogonial transitions are accompanied by a shift in gene expression, however, whether equivalent changes in metabolism occur remains unexplored. In this review, we mined recently published scRNA-seq databases from mouse and human testes to compare expression profiles of spermatogonial subsets, focusing on metabolism. Comparisons revealed a conserved upregulation of genes involved in mitochondrial function, biogenesis, and oxidative phosphorylation in differentiating spermatogonia, while gene expression in SSCs reflected a glycolytic cell. Here, we also discuss the relationship between metabolism and the external microenvironment within which spermatogonia reside.

Keywords: accompanying spermatogonial; metabolic changes; spermatogonial stem; changes accompanying; cell

Journal Title: Developmental cell
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.