Lysosomes are the recycling center and nutrient signaling hub of the cell. Here, we show that lysosomes also control mesenchymal stem cell (MSC) differentiation by proteomic reprogramming. The chaperone-mediated autophagy… Click to show full abstract
Lysosomes are the recycling center and nutrient signaling hub of the cell. Here, we show that lysosomes also control mesenchymal stem cell (MSC) differentiation by proteomic reprogramming. The chaperone-mediated autophagy (CMA) lysosome subgroup promotes osteogenesis, while suppressing adipogenesis, by selectively removing osteogenesis-deterring factors, especially master transcriptional factors, such as adipogenic TLE3, ZNF423, and chondrogenic SOX9. The activity of the CMA-committed lysosomes in MSCs are controlled by Van-Gogh-like 2 (Vangl2) at lysosomes. Vangl2 directly binds to lysosome-associated membrane protein 2A (LAMP-2A) and targets it for degradation. MSC-specific Vangl2 ablation in mice increases LAMP-2A expression and CMA-lysosome numbers, promoting bone formation while reducing marrow fat. The Vangl2:LAMP-2A ratio in MSCs correlates inversely with the capacity of the cells for osteoblastic differentiation in humans and mice. These findings demonstrate a critical role for lysosomes in MSC lineage acquisition and establish Vangl2-LAMP-2A signaling as a critical control mechanism.
               
Click one of the above tabs to view related content.