Abstract In this work, current multiplication at high electric field in epitaxial boron-doped diamond with high acceptor concentration is analyzed, including self-heating effect and impurity impact ionization. Quasi-static current-voltage (I-V)… Click to show full abstract
Abstract In this work, current multiplication at high electric field in epitaxial boron-doped diamond with high acceptor concentration is analyzed, including self-heating effect and impurity impact ionization. Quasi-static current-voltage (I-V) characteristics were measured using a transmission-line pulse setup with 100 ns pulse duration on samples with two Ohmic titanium/gold electrodes. Unambiguous exponential and super-exponential behaviors are observed in the I-V curves along with, in some cases, negative differential resistance. The self-heating effect is analyzed using transient interferometric mapping of the thermal energy distribution between electrodes with an ns time scale. Measured I-V characteristics are modelled by finite element method and by considering boron acceptor ionization due to self-heating effect and impurity impact ionization. Simulated I-V characteristics, in particular the appearance of the negative differential resistance region attributed to self-heating, are in good agreement with experimental data.
               
Click one of the above tabs to view related content.