Abstract In this paper, inspired by Fernandez-Lopez and Garcia-Rio [11] , we shall give a new lower diameter bound for compact non-trivial shrinking Ricci solitons depending on the range of… Click to show full abstract
Abstract In this paper, inspired by Fernandez-Lopez and Garcia-Rio [11] , we shall give a new lower diameter bound for compact non-trivial shrinking Ricci solitons depending on the range of the potential function, as well as on the range of the scalar curvature. Moreover, by using a universal lower diameter bound for compact non-trivial shrinking Ricci solitons by Chu and Hu [7] and by Futaki, Li, and Li [13] , we shall provide a new sufficient condition for four-dimensional compact non-trivial shrinking Ricci solitons to satisfy the Hitchin–Thorpe inequality. Furthermore, we shall give a new lower diameter bound for compact self–shrinkers of the mean curvature flow depending on the norm of the mean curvature. We shall also prove a new gap theorem for compact self–shrinkers by showing a necessary and sufficient condition to have constant norm of the mean curvature.
               
Click one of the above tabs to view related content.