Abstract Quotients of Banach-Lie groups are regarded as topological groups with Lie algebra in the sense of Hofmann-Morris on the one hand, and as Q-groups in the sense of Barre-Plaisant… Click to show full abstract
Abstract Quotients of Banach-Lie groups are regarded as topological groups with Lie algebra in the sense of Hofmann-Morris on the one hand, and as Q-groups in the sense of Barre-Plaisant on the other hand. For the groups of the type G / N where N ⊆ G is a pseudo-discrete normal subgroup, their Lie algebra in the sense of Q-groups turns out to be isomorphic to the Lie algebra of G, which is in general merely a dense subalgebra of the Lie algebra of G / N when regarded as a topological group with Lie algebra. The submersion-like behavior of quotient maps of Banach-Lie groups is also investigated. The two aforementioned approaches to the Lie theory of the quotients of Banach-Lie groups thus lead to differing results and the Lie theoretic properties of quotient groups are more accurately described by the Q-group approach than by the approach via topological groups with Lie algebras.
               
Click one of the above tabs to view related content.