LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Transport of 2,4-dichloro phenoxyacetic acid by human Na+-coupled monocarboxylate transporter 1 (hSMCT1, SLC5A8).

Photo by tmillot from unsplash

Using X. laevis oocyte expression system, we investigated whether human Na+-coupled monocarboxylate transporter 1 (SLC5A8, hSMCT1) is involved in 2,4-dichlorophenoxyacetate (2,4-D) uptake by the renal tubular epithelial cells. 2,4-D is a… Click to show full abstract

Using X. laevis oocyte expression system, we investigated whether human Na+-coupled monocarboxylate transporter 1 (SLC5A8, hSMCT1) is involved in 2,4-dichlorophenoxyacetate (2,4-D) uptake by the renal tubular epithelial cells. 2,4-D is a herbicide that causes nephrotoxicity. Heterologous expression of hSMCT1 in X. laevis oocytes conferred the ability to take up 2,4-D; the induced uptake process was Na+-dependent and electrogenic. The Na+-dependent uptake of 2,4-D was inhibited not only by known hSMCT1 substrates, but also by many structural analogs of 2,4-D. The currents induced by 2,4-D, 4-chlorophenoxyacetate (4-CPA) and 2-methyl-4-chlorophenoxyacetate (MCPA) were saturable: the rank order of the maximal induced current and the affinity for hSMCT1was 2,4-D > 4-CPA > MCPA. The relationship between the structures of the derivatives and their transport activity implied specific structural features in a compound for recognition as a substrate by hSMCT1. Furthermore, we have demonstrated using purified rabbit renal brush-border membrane vesicles that 2,4-D potently inhibited the Na+-dependent uptake of pyroglutamate, a typical substrate for Smct1, and that 2,4-D uptake process was Na+-dependent, saturable and inhibitable by a potent blocker, ibuprofen. We conclude that hSMCT1 is involved partially in the renal reabsorption of 2,4-D and its derivatives and their nephrotoxicity.

Keywords: hsmct1; monocarboxylate transporter; coupled monocarboxylate; human coupled

Journal Title: Drug metabolism and pharmacokinetics
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.