LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Organic anion-transporting polypeptide 1a4-mediated heterogeneous distribution of sulforhodamine-101 in rat hepatic lobules.

Photo from wikipedia

It has been known that organic anion-transporting polypeptides (Oatps) involve hepatic transports several organic anionic compounds and drugs. This study aimed to investigate sulforhodamine-101 (SR-101) distribution in the rat liver,… Click to show full abstract

It has been known that organic anion-transporting polypeptides (Oatps) involve hepatic transports several organic anionic compounds and drugs. This study aimed to investigate sulforhodamine-101 (SR-101) distribution in the rat liver, determine the molecules responsible for the distribution, and delineate the manner of distribution. After intravenous SR-101 administration, its distribution in frozen rat hepatic sections was examined. SR-101-derived signals were detected in regions around the hepatic central vein (CV), where immunohistochemistry (IHC) indicated high Oatp1a4 expression. The signals decreased with treatment by digoxin, a specific substrate for Oatp1a4. In vitro studies using isolated rat hepatocytes and rat Oatp1a4-expressing Xenopus laevis oocytes have suggested that SR-101 is an Oatp1a4 substrate and is taken up into rat hepatocytes mainly via Oatp1a4. Therefore, results suggested SR-101 zonation because of Oatp1a4 involvement and that Oatp1a4 function is dominant in the region around the hepatic CV in rat hepatic lobules.

Keywords: anion transporting; rat; organic anion; rat hepatic; oatp1a4; distribution

Journal Title: Drug metabolism and pharmacokinetics
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.