LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Numerical analysis of apparent decitabine uptake in HCT116 cells: Incorporation of a bidirectional first-order kinetic parameter for ENT1 transport and Michaelis-Menten parameters for subsequent phosphorylation.

Photo by nci from unsplash

Decitabine (DAC), a DNA methylation inhibitor, is transported into cancer cells mainly via equilibrative nucleoside transporter 1 (ENT1) and subsequently phosphorylated by deoxycytidine kinase (dCK). We previously reported that apparent DAC… Click to show full abstract

Decitabine (DAC), a DNA methylation inhibitor, is transported into cancer cells mainly via equilibrative nucleoside transporter 1 (ENT1) and subsequently phosphorylated by deoxycytidine kinase (dCK). We previously reported that apparent DAC uptake into cells may be described using a simple compartment model with clearance for facilitated diffusion (PS) and subsequent phosphorylation (CLmet). In the present study, time course of apparent intracellular [3H]-DAC uptake was analyzed numerically, and PS and CLmet values were calculated using the compartment model in human colon cancer HCT116 cells. PS at 0.1 μM [3H]-DAC was markedly decreased in the presence of 100 μM irinotecan or etoposide, while CLmet was markedly decreased in the presence of 100 μM cytarabine or gemcitabine. CLmet at 0.1-10 μM [3H]-DAC varied in a concentration-dependent manner and was described by Michaelis-Menten parameters Km,met and Vmax,met. In conclusion, DAC uptake mainly via ENT1 may be described by a bidirectional first-order kinetic parameter, while phosphorylation by dCK may be described by Michaelis-Menten parameters.

Keywords: michaelis menten; hct116 cells; menten parameters; subsequent phosphorylation; ent1

Journal Title: Drug metabolism and pharmacokinetics
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.