We apply Bayesian decision analysis (BDA) to incorporate patient preferences in the regulatory approval process for new therapies. By assigning weights to type I and type II errors based on… Click to show full abstract
We apply Bayesian decision analysis (BDA) to incorporate patient preferences in the regulatory approval process for new therapies. By assigning weights to type I and type II errors based on patient preferences, the significance level (α) and power (1-β) of a randomized clinical trial (RCT) for a new therapy can be optimized to maximize the value to current and future patients and, consequently, to public health. We find that for weight-loss devices, potentially effective low-risk treatments have optimal αs larger than the traditional one-sided significance level of 5%, whereas potentially less effective and riskier treatments have optimal αs below 5%. Moreover, the optimal RCT design, including trial size, varies with the risk aversion and time-to-access preferences and the medical need of the target population.
               
Click one of the above tabs to view related content.