LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Bioengineered tissue models for the development of dynamic immuno-associated tumor models and high-throughput immunotherapy cytotoxicity assays.

Photo from wikipedia

Cancer immunotherapy is rapidly developing, with numerous therapies approved over the past decade and more therapies expected to gain approval in the future. However, immunotherapy of solid tumors has been… Click to show full abstract

Cancer immunotherapy is rapidly developing, with numerous therapies approved over the past decade and more therapies expected to gain approval in the future. However, immunotherapy of solid tumors has been less successful because immunosuppressive barriers limit immune cell trafficking and function against cancer cells. Interactions between suppressive immune cells, cytokines, and inhibitory factors are central to cancer immunotherapy approaches. In this review, we discuss recent advances in utilizing microfluidic platforms for understanding cancer-suppressive immune system interactions. Dendritic cell (DC)-mediated tumor models, infiltrated lymphocyte-mediated tumor models [e.g., natural killer (NK) cells, T cells, chimeric antigen receptor (CAR) T cells, and macrophages], monocyte-mediated tumor models, and immune checkpoint blockade (ICB) tumor models are among the various bioengineered immune cell-cancer cell interactions that we reviewed herein.

Keywords: mediated tumor; immunotherapy; tumor models; cancer; cell; tumor

Journal Title: Drug discovery today
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.