LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

A novel variable topology design for a multi-flexible ejection mechanism

Photo by edhoradic from unsplash

Abstract The airborne missile launch mechanism often subjects to significant deformations induced by the large ejection force during high-speed actuations in missile ejection process, leading to a substantial deviation of… Click to show full abstract

Abstract The airborne missile launch mechanism often subjects to significant deformations induced by the large ejection force during high-speed actuations in missile ejection process, leading to a substantial deviation of separation parameters from designed values that threats safety of the carrier. This study proposes a novel variable topology design for launch mechanism, achieved via a Prismatic-Revolute-Revolute pair (PR-R) motion formed by the structural gap with a specific direction. It enables launch mechanism variability during missile ejection process and optimizes the ejection force given by the front and back ejection arms, and greatly optimizes the separation parameters during missile ejection. The kinetics simulation analysis is conducted under working conditions of the original ejection mechanism and the novel mechanism with variable topology design, respectively. The results show that the novel variable topology design is more befitting for the launch process in terms of system safety and controllability, effectively improving the separation posture, restraining the flexible effect of the mechanism, and fulfilling the effectiveness of the design value of multi-rigid body.

Keywords: variable topology; topology design; topology; ejection; mechanism

Journal Title: Defence Technology
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.